三次元ベクトル場および発散についての補足
三次元におけるベクトル表現は、

であるので、その発散は次のようになります。



以上のことによりベクトル場の発散(ダイバージェンス)というのは、

ということなので、

ということがいえます(内積なのでスカラー量)。

Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
-
円錐の慣性モーメント
カテゴリー
-
感染率による感染者数増加の比較
カテゴリー
-
LaTeXコードの組み方
カテゴリー
-
変数変換とヤコビアン
カテゴリー
-
円錐の頂点、底面、重心に関する慣性モーメント
カテゴリー
-
分散共分散行列
カテゴリー