円錐の慣性モーメントと平行軸の定理
平行軸定理を利用した円錐の慣性モーメントの求め方
前回にひき続き円錐に関する慣性モーメントを考察していきます。
今回は平行軸の定理という物体(剛体)の物理的特性を利用しながら円錐の慣性モーメントを2つの視点から求め、また更に同じように平行軸定理を利用して円錐の重心周りの慣性モーメントを求めていきます。
平行軸の定理とは求められた慣性モーメントの軸とは平行な任意の個所に置ける軸周りに関する慣性モーメントを求める際に利用される定理になります。
このセクションを一通り学習すれば平行軸の定理に関してより理解が深まり、実は大変便利で役に立つ定理であることが理解できると思います。
平行軸の定理
平行軸の定理とは、剛体の重心を通る慣性モーメントに対し、その慣性モーメントの軸とは平行な任意の場所における軸周りに関する慣性モーメントを求める際に利用される定理になります。
式としては次のようになります。
上記式において左辺Iが求めようとする任意の軸周りの(重心軸を通る慣性モーメントと平行な)慣性モーメント、右辺第1項が重心軸に関する慣性モーメントになり、第2項のが重心軸とは平行な軸までの距離、そして
が質量になります。
今回の場合、上記の定理をそのまま適用するのではなく、この場合移動させる距離変数が微小円盤要素の中に入っているので積分を実行する前の形において距離変数
を組み入れ、それで
で積分して目的の定理の第2項を導いていくことになります。
回転軸が円盤の中心を通り円盤と平行な場合の慣性モーメントの計算過程
円錐における任意高さにおいて、その任意高さでの厚さの円盤の慣性モーメントを求めますがまず最初に回転軸が円盤の中心を通りその円盤と平行な場合の慣性モーメントの導出をします。
円盤の慣性モーメントの導出
上記画像の円盤に関して、円盤の質量を、半径を
とします。
また座標系は前回と同様にデカルト座標ではなく平面極座標のヤコビアンを使用して微小面積は、
面積がなので、この円盤の密度
は、
さらにこの場合軸からの距離は、
これらによりは、
これを積分計算によって足し上げます。
なお途中の計算過程において三角関数の次のような公式を使用しています。
これを使って以下のように積分式を計算していきます。
これにより円盤の重心を通り法線面と同一な方向軸に関する慣性モーメントは以下のようになります。
逆さ円錐の頂点周りに関する慣性モーメントの導出
円錐内の任意の高さ
における
軸と平行な(頂点まわりの)慣性モーメントの導出
上記の円錐の高さにおける
軸に平行な軸に関する慣性モーメントを求めます。
まず最初に右のような円錐の高さに関する相似関係によって任意の高さにおける円盤の半径に関する距離変数
を求めます。
軸に平行な任意の高さ
にある重心を通る円盤面上の慣性モーメントを今仮に
、その任意高さ
にある微小厚さ
の円盤の質量を
とします。
先ほど求めた円盤の重心を通り円盤と平行な軸に関する慣性モーメントは。
これにより微小厚さにおける重心を通り円盤面内と平行な慣性モーメント
は以下のように置けることになります。
この時の質量は任意高さ
の円盤の面積が
であり対象としている円盤の厚さがdz、さらに円錐に関してはその体積と質量は以下のようになります。
円錐の体積 | ![]() |
---|---|
円錐の質量 | ![]() |
これにより円錐の体積密度は、
この時の質量の質量はこの体積密度
と円盤の面積、厚さ
を使って以下のように表せられます。
これらを先ほどのに代入していきます。
また先ほどの距離変数に関して
を代入してこれを積分によって足し上げていきます。
よって平行軸定理の第一項の逆さ円錐内の任意高さにおける質量
の重心を通る法線面内を通る軸に関する慣性モーメントは以下のように求まります。
平行軸の定理における第2項の導出
重複しますが右辺第2項に関しては定理をそのまま適用するのではなく、この場合、移動させる距離変数が微小円盤要素の中に入っているので積分する前の形を考えて距離変数
を組み入れます。
そこではじめてで全体を積分して目的の定理の第2項を導いていくことになります。
平行軸定理を紹介しているところでの式に関してかみ砕いて説明すれば以下のような状態から考察していくことになります。
、及びその他は同じなので微小質量部分
は同様にして、
ここで求める平行軸定理の第2項をとおけば
は、
これを積分によって足し上げます。
よって以下のように求まります。
求める円錐の頂点周りの慣性モーメントをここでとおけば、
これらに代入していけば次のように求まります。
円錐の底面周りの慣性モーメント
任意高さにおける円錐内の円盤のZ軸を通る円盤面内における慣性モーメントはすでに求まっていますがさらに視点を変えてあえて次のような座標における円錐の任意高さ中の円盤とみなした部分の慣性モーメントを求めていきます。
この座標における変数に関しては次のような相似関係を持ちます。
また先ほどと同じように体積密度、微小部分質量は、
より同様にして微小円盤質量要素は次のようになります。
となるので先ほど求めた微小質量要素は同様にして、
ここで先ほどの逆さ円錐に関して軸に平行な任意の高さ
のZ軸を通る円盤面上の慣性モーメントの結果を
とおきましたが、結果的に同じ値になるのですがひとまず区別をつけるために上記画像における高さ
の位置での円盤の慣性モーメントを
とおきます。
距離変数をとして微小部分における慣性モーメント
は、
より、
これに距離変数rを代入していき積分計算していきます。
ここで前回の円錐における慣性モーメントの積分計算と同様に次のように置いて変数変換をします。
とおけば、
これにより積分範囲は次のように変更になります。
![]() |
![]() |
---|---|
![]() |
![]() |
なので次のように計算していきます。
よって頂点周りにおける前段階の計算過程において出てきた円錐内の円盤に関しての慣性モーメントと同様に次のような計算結果が求まります。
さらに任意高さの円錐における円盤面の法線に平行な慣性モーメント
に対して平行で
の距離だけ下方向へ移動した、円錐の底面における
軸周りの慣性モーメントを
とおいて、その平行軸定理の第2項を
とおきます。
そうするとは平行軸の定理により、
平行軸定理における第2項の移動変数の微小部分に関する慣性モーメントjは以下のようになります。
これをから
にわたって積分計算してきます。
これによりは以下のように求まります。
そうすると求める平行軸の定理を使用した円錐の底面周りのX軸に関する慣性モーメントは以下、
なので、これに代入すれば円錐の底面周りに関する慣性モーメントは以下のように求まります。
円錐の重心
円錐の重心の求め方
左の図を使って円錐の重心を計算していきます。
この画像の円錐は均一な質量でとし、
高さが、
底面の半径がのものと考えます。
円錐の体積は、
円錐の質量をと置けば体積密度
は、
微小厚さの円盤の質量は先ほどと同じようにして、
軸上にあると考えられるので軸線
軸上の任意の高さの位置を距離変数として、
また距離変数に関しては底面周りの慣性モーメントを求めた際のものを使用するので以下になります。
求める重心の値をと置いて次のように計算していきます。
これにより円錐の重心は以下のようになります。
またこの結果によって円錐の頂点の位置からの重心までの距離はということになります。
円錐の重心周りに関する慣性モーメントの導出
絵のようなクラッカー(円錐の物体)を考えたとき、その先っぽ(頂点)をもって上のほうにポーンと投げると、大体はクラッカー(円錐)の底面と平行にして、クラッカーの胴体部分あたり(重心)を中心にくるくる回るということが経験的にわかるかと思います。
この重心に関する慣性モーメントを平行軸の定理を使って求めていきます。
円錐に関しての重心周りの慣性モーメントの導出
円錐に関するそれぞれの頂点と底面周りに関する慣性モーメントの結果は次のようになりました。
頂点周りにおける円錐に関しての慣性モーメントの結果
底辺周りにおける円錐に関しての慣性モーメントの結果
ここでさらに平行軸の定理を利用します。
この時、円錐の質量は定数のと決まっているので今までの距離変数を使用した前段階の積分計算は必要ありません。
なので平行軸の定理をそのまま使用する(できる)ことになります。
頂点周りの慣性モーメントと、底面の中心心を通る法線面に平行な慣性モーメント
は、円錐の重心を通る底面に平行な軸に関する円錐の重心に関する慣性モーメントを
とおいた場合次のように表現できることになります。
平行軸定理により、円錐の重心周りの慣性モーメントに関して次のようにな連立方程式が導かれます。
これらを一連の連立方程式ととらえてについて計算していきます。
より、
よって以下のように求まります。
このように平行軸の定理というのは始めのうちは何かとややこしそうに思えますが一度きちんと理解し使えるようになれば便利で役に立つ定理であることがお分かりいただけたかと思います。
平行軸定理と慣性モーメント関連ページ
- 円錐の慣性モーメントの導出
- 円錐に関する慣性モーメントの計算と考察。 任意高さにおける円錐中の円盤とみなした部分を相似関係によって求め目的とする円錐の慣性モーメントを求めていきます。
- 可逆・不可逆のエントロピー
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
- コンプトン散乱A
- 外郭軌道電子との衝突によりエネルギーの減少した散乱光子をコンプトン散乱光子と呼び、さらにはこのような散乱をコンプトン散乱効果などと言ったりします。
- コンプトン散乱@
- コンプトン散乱とは、光子がターゲットとなる原子の外殻軌道電子と衝突して衝突前後においてエネルギーの変化を起こさせ、光子が持っている運動エネルギーを軌道電子に与えて外殻の軌道電子を原子の外に飛び出させる現象を主に言います。
- 光電効果とコンプトン効果
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 趣旨としては通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。またトップレベルドメイン直下はブログ型コンテンツになっておりブログ形式のコンテンツは数学以外のテーマを主に扱います。
- エントロピー増大測
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
- エントロピー
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
- クエーサーとブラックホール
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
- コリオリ弾軌道計算-補遺
- 当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
- 長距離射程におけるコリオリ弾軌道計算
- 初歩的な力学の分野において、慣性系に関する話の中にコリオリの力というものがあります。この“コリオリ”とは人の名前であり地球が回転することによっておこる見かけの運動力を、回転座標上で移動したときの移動方向と垂直な方向に受ける慣性力の一種を数式で表現したものになります。 このページでは実際にアサルトライフルなどの軽火器射撃訓練を行った経験がある当Webサイト管理人が、射撃検定1級取得者の立場という観点からも含めてコリオリ力を考慮した長距離射撃などについて考察します。
- くり抜き円盤の慣性モーメント
- 物体(剛体)の回転に関する物理的特性を示す用語で“慣性モーメント”というのがありますが、それに関連する内容でで“平行軸の定理”というのがあります。 これは物体の軸に関しての慣性モーメントがわかっているとき、これに平行な位置における軸に関しての慣性モーメントを求めるとき使われる計算法になります。
- コリオリと軽火器の話
- 初歩的な力学の分野において、慣性系に関する話の中にコリオリの力というものがあります。この“コリオリ”とは人の名前であり地球が回転することによっておこる見かけの運動力を、回転座標上で移動したときの移動方向と垂直な方向に受ける慣性力の一種を数式で表現したものになります。 このページでは実際にアサルトライフルなどの軽火器射撃訓練を行った経験がある当Webサイト管理人が、射撃検定1級取得者の立場という観点からも含めてコリオリ力を考慮した長距離射撃などについて考察します。