解析力学
解析力学とは
○解析力学とは、簡単に説明すればニュートン力学における運動方程式の記述を座標変換などの解析的な手法を用い、力学の現象を数学的に洗練された形にあらためて表現しなおしたものをいいます。
座標変換の簡単な例━【ベクトルの回転変換】
原点
を共通に
の周りに反時計回りに角度
だけ回転させた直交座標系を極座標
座標系とし、元の座標系
座標系との関係をベクトル
を使って以下の用の表現します。

座標変換

座標を極座標変数
で表すと、

これを時間
で微分します。


ここで、

とすれば、

さらに直交座標系における加速度成分を示すと、

これらにより極座標系による加速度成分を求めれば、

以下のように計算していきます。




タイトルにでかでかと“解析力学”と書いてますが、内容的にはラグランジュ方程式、オイラー方程式の組み立て方、オイラー式を使った問題などの基本的な部分と、変分原理に関して典型的な事項についてのみ軽く説明してるだけなのであまり詳しくはやっていません。
あくまで初学者、あるいは一般の方が、解析力学というものはどんなものかと知るような場合に適した内容になっているかと思います。ただしある程度の微分積分学の知識が必要です。

Title Text
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
コリオリの力とは
フランスの科学者で軍属でもあったガスパール・ギュスターブ・コリオリ
初歩的な力学の分野において慣性系に関する話の中にコリオリの力というものがあります。
この“コリオリ”とは人の名前であり地球が回転することによっておこる見かけの運動力を、回転座標上で移動したときの移動方向と垂直な方向に受ける慣性力の一種を数式で表現したものになります。

一般的にこのコリオリという人物は科学者という記述が多いのですが実は軍人でもあったことはあまり知られていないようです。
北半球において大砲を撃ったとき、その弾道が標的よりもわずかに右にずれることを数式によって説明した人物ということで自衛隊でも多少知られた存在らしく、話の小ネタとして話題になることもありました(おそらく重迫撃砲(ヘヴィモータ)などではコリオリの力による弾道補正が必要になるためだと思います)。
回転座標で運動する物体
円運動の角度を
、周囲に沿った距離を
、ボールの速度を
、慣性力を
とおくと、

上の図は、矢印の通りに回転させた円盤を真上からみたものであり、中心から外側へ投げた球があたかも右のほうへずれたように見えるその様子を表したものです。中心部分にいる人物は図の
の方向へ投げたつもりが
のほうへまるで曲がって投げたように見えてしまいます。
はは動径方向に垂直な方向に働く慣性力とし、一定加速度での移動距離は
の形で表せるので、


この力をコリオリの力と呼び、回転座標系で運動する物体に加わる慣性力のことを言います。
この力を実際に数式を使って具体的に表現してみましょう。

左の座標系が3次元での回転、右の座標系の図が2次元での回転を表したものになります。
これより回転座標系において時間変化した角度を
とすれば以下のように表せます。

または、

これを時間で微分します。


上記式を再度時間微分します。


力
と
の間の関係は次式で表されます。

さらに
系(慣性系)では次のような運動方程式、

が成り立つので上の式の結果を用いて
を表せば、


これらを代入し
系の座標について整理すれば、

は回転系座標から見た加速度運動で、運動の原因となる力として
のほかに2つの力が加わった形であり、右辺第2項、第3項は見かけの力(慣性力)を示しています。
右辺のそれぞれの意味は、
| 右辺第2項(コリオリの成分) | ![]() |
| 右辺第3項(遠心力の成分) | ![]() |
を示しています。
回転座標系をまとめてみると次のようになります。
慣性系に対して運動する座標系
| 1. | 等速度運動する座標系は慣性系となる(ガリレイ変換) |
| 2. | 加速度運動する座標系は非慣性系(見かけの力=慣性力)を考える
|
| 3. | 回転運動をする座標系は2種類の見かけの力を考える
|
これらを踏まえて今度は長距離射撃におけるコリオリ弾道軌道計算を考えていきましょう。
次回に続きます。





