微分積分学

合成関数の微分

合成関数の微分法

合成関数とは

合成関数というのは複数の関数によって構成されているいわば混合型関数のようなものと考えればよいでしょう。

 

この合成関数を微分するという概念は微分積分学を学習する上で非常に重要であり避けては通れないものになります。

 

 

連鎖律(chain rule)

■考え方としては次のようになります。

 

変数xによって構成されているz = f(x)という関数を考えます。
その微分表現はdz/dxですが、z = f(x)の式はその中に同じ変数xによって2つの関数によって構成されていたとします。

 

その二つに分けた関数をそれぞれブラックショールズモデル,合成関数微分,微分積分学とします。

 

ブラックショールズモデル,合成関数微分,微分積分学

すると微分表現は次のようになります。

 

chain rule

 

 

微分記号dz/dx(ディーズィーディーエックスと読みます。けっしてディーエックス分のディーズィーなどとは言いません)というのは厳密には分数ではないのですが、この場面では大体そんな感じで受け止めてください。

 

では実際の計算に照らし合わせてやっていきます。

 

ブラックショールズモデル,合成関数微分,微分積分学

 

 

に対して微分を実行します。

 

上記の式はまず、ブラックショールズモデル,合成関数微分,微分積分学という式とブラックショールズモデル,合成関数微分,微分積分学という二つの関数で構成されているということがわかるかと思います。

 

それぞれをブラックショールズモデル,合成関数微分,微分積分学、 ブラックショールズモデル,合成関数微分,微分積分学とすると、

 

 

ブラックショールズモデル,合成関数微分,微分積分学

 

などと表現できるので、それをそれぞれ微分します。

ブラックショールズモデル,合成関数微分,微分積分学

 

 

という結果が出てくるので、先ほどのブラックショールズモデル,合成関数微分,微分積分学に代入すれば、

 

 

ブラックショールズモデル,合成関数微分,微分積分学

 

 

ここでyブラックショールズモデル,合成関数微分,微分積分学であるので、それを代入し、

 

 

ブラックショールズモデル,合成関数微分,微分積分学

 

 

となります。

 

合成微分法を知らないという場合、括弧の中を分解してさらにそれを微分しようとするでしょうがこのようなやり方をすればだいぶ手間が省ける効率的な微分法だということがお分かりいただけるかと思います。

さらに多くの関数で構成されている合成関数であったとしても、同じように、

 

合成関数の微分方法

 

とすればよいでしょう。こうしたやり方の利点は、ある関数の中にどんなに多くの関数が構成されていようともその構成関数を鎖のようにループさせればいくらでも合成関数の微分が可能であるということです(ただし厳密な理論と証明ははぶきます)。

その他の計算例

次の合成関数を微分してみましょう。

 

合成関数の微分方法

 

この関数は、

 

合成関数の微分方法

 

のように表せます。

 

これを次のようにチェインさせます。

 

合成関数の微分方法

なので、それぞれを微分すると、

 

合成関数の微分方法

代入すれば、

 

合成関数の微分方法

よって式zxで微分した結果は以下のようになります。

 

ブラックショールズモデル,合成関数微分,微分積分学

nextupprevious

ブログランキング・にほんブログ村へ

合成関数の微分関連ページ

導関数
このセクションでは導関数の基本的な考え方とその計算方法について考察していきます。
対数微分法
対数微分法とは両辺の対数をとることから名づけられた微分法であり、この微分を行う場合、合成関数の微分を実行する際に用いられた連鎖律という考え方が重要になります。
偏微分
微分積分学−ブラックショールズ偏微分方程式を導くための偏微分に関して考察していきます。1つの式の中に2つの変数が入っているある関数に対しての微分h棒法について考察していきます。

ホーム RSS購読 サイトマップ
TOP 線形代数 ベクトル解析 慣性モーメント 解析力学 微分方程式 NEへの道しるべ