よい子の低学年向け数学広場

ラグランジュ関数

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 


速度解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線で運動している質量解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線の運動エネルギー解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線をデカルト座標で表せば

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

これの変分を考えてみましょう。

 

簡単のために運動は解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線軸方向のみを考え、そのずれの時間を解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線から解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線とします。

 

まず解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線自体の時間に対する変分と微分の関係を求めます。

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線


解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

さらに運動エネルギー解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線の変分を考えれば、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 


解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

(1.12)に(1.13)を代入すると、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

微分と変分の入れ替えが可能なので次のようになります。

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

(1.15)式を積分すると、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

(1.16)において微分と積分を交換しています。

 

さらに部分積分を適用しますが、このとき第一項は端点を固定しているので結果解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線になるということに注意すれば、
解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

力がポテンシャルエネルギー解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線などの保存力だった場合

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

そしてこれの変分を考えると

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

(1.18)(1.19)を使って解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線の式を変形させると、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

このように停留値をとらせるようなものになっており、実現される運動はこれを満たすものだと考えることが出来ます。

 

ここでこの解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線とおき、オイラーの方程式と対応させれば、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

これを解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線に拡張すれば、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

さらにここで解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線と表せば、

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

一般化運動量は

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

ある質点解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線の運動を考えてみましょう。

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線を水平面とし解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線を鉛直上向きに座標を取ります。そうするとラグランジアンは

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

となるのでこれをラグランジュの式に当てはめれば

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

となるので結果は次のようになります。

 

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線

 

 

cosh img 202007

 

 

next up previous

ラグランジュ関数記事一覧

ラグランジュによる連成振動の解@

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線 長さの糸を張力で張っておき、長さごとに質量のおもりを結びつけ、そのおもりは直角方向のみに振動するとします。こういった場合のおもりの小振動をラグランジアンを使って求めてみましょう。

≫続きを読む

 

ラグランジュによる連成振動の解A

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線 壁側についているばねのばね定数を、真ん中のバネのバネ定数をとし、そのバネの境に重さのおもりをつけた場合の連成振動の解。

≫続きを読む

 

2重振り子(微小な場合)

解析力学,ラグランジュ,一般化,連成振動,2重振り子,変分原理,オイラーの方程式,変分問題,ハミルトンの方式,懸垂線 おもりを2つ吊るした振り子の微小振動の動きをラグランジアンを使って解析してみましょう。

≫続きを読む

 

 
TOP 運動方程式の一般化 ラグランジュ関数 オイラー方程式 変分法 ハミルトン方程式