2017年2月3日

ロンスキアンそのD

ロンスキ―行列式そのD

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


ロンスキアンその@に出てきた行列式線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学は2行2列の式、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

でしたが厳密に書くと次のようなものになります。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

 

このロンスキアンを使って求めたい定型数2階非同次微分方程式の一般解は、ロンスキアン@〜Cの過程より次のような式になることをやりました。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

応用

いま高さ線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学に関するある関数が存在し、それが時間線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学 に依存し重力加速度線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学も加わった次のような定型数2階非同次微分方程式を考えます。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

ロンスキアン@〜Cまでの内容よりまず基本解から求めます。
上記式の右辺を線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学と置いたとき式は、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

となるので求める基本解を線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学と置いて、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


これにより式、線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学は、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

なる2つの基本解を持つと考えられます。実際にロンスキアンを計算してみると、まず基本解の一階微分は、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

なので求めたいロンスキー行列式は次のように求まります。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


この結果により上記の2つの解は基本解だと考えることができます。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

より、
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

なので結果求める解は次のようになります。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

実際に因果律を求めてみると、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

これらを線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学に代入して計算していきます。
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学
線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


となるので微分方程式、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


の一般解は、

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学


であることがわかります。

線型代数,ベクトル解析,慣性モーメント,解析力学,微分方程式,フーリエ解析,物理学,数学

nextupprevious

おながいします(・ω・)

ブログランキング・にほんブログ村へ

 



ロンスキアンそのD関連ページ

コンプトン散乱A
外郭軌道電子との衝突によりエネルギーの減少した散乱光子をコンプトン散乱光子と呼び、さらにはこのような散乱をコンプトン散乱効果などと言ったりします。
コンプトン散乱@
コンプトン散乱とは、光子がターゲットとなる原子の外殻軌道電子と衝突して衝突前後においてエネルギーの変化を起こさせ、光子が持っている運動エネルギーを軌道電子に与えて外殻の軌道電子を原子の外に飛び出させる現象を主に言います。
光電効果とコンプトン効果
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 趣旨としては通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。またトップレベルドメイン直下はブログ型コンテンツになっておりブログ形式のコンテンツは数学以外のテーマを主に扱います。
フーリエ級数展開
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 趣旨としては通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。またトップレベルドメイン直下はブログ型コンテンツになっておりブログ形式のコンテンツは数学以外のテーマを主に扱います。
フーリエ級数H
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 趣旨としては通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。またトップレベルドメイン直下はブログ型コンテンツになっておりブログ形式のコンテンツは数学以外のテーマを主に扱います。
フーリエ級数G
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数F
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数E
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数D
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数C
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数B
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数A
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
フーリエ級数@
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
可逆・不可逆のエントロピー
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
エントロピー増大測
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
エントロピー
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
モーメント母関数(積率母関数)
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。
ロンスキアンそのC
当サイトは主に物理に関する数学など、その他周辺も含めた少々ごった煮のウェブサイトです。 数学分野に関しての趣旨としては、通常のテキストでは割愛されてしまう内容などを詳しく記述し、さらには難しい説明をするのではなく、わかりにくい内容をいかにわかりやすく伝えるか━など、そういったウェブコンテンツならではの利便性と機動性を生かしたサイト作成を主眼としています。

ホーム RSS購読 サイトマップ
TOP 線形代数 ベクトル解析 慣性モーメント 解析力学 微分方程式 NEへの道しるべ mathematical.jp