よくわかる慣性モーメント>>ヤコビアン−関数行列式

dv計算法−答え

 

 

答え

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

問題@答え

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

問題Aの答え

極座標におけるヤコビアンを使用します。

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

ちなみにthetaphiの範囲についてですが、これはまずrを0からaまで伸ばし、さらにはthetaに関しては、例えばz軸から0を中心にして180度動かし、そしてphiに関して360度回転させるという道筋になっています。ですのでthetaはその範囲がヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標となります。2πにはなりません。

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

問題Bの答え

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

この場合、円柱座標におけるヤコビアンを使用します。

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ちなみにrの範囲についてですが、これは相似関係を利用して導き出しています。

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

問題Cの答え

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

比例定数をcとおきます。そうしたときρ

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

平面極座標においてのヤコビアンはヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

ヤコビアン,関数行列式,微小面積要素,計算,デカルト座標,極座標,微小体積要素,円柱座標

 

next up previous

dv計算法−答え関連ページ

dv計算の問題
ある座標系を他の座標系へ変換するときに関数行列式をいうのを用います。この時の関数行列式をヤコビアンと呼びます。このヤコビアンを使って実際にデカルト座標系から極座標、さらには円柱座標系への変換を、偏微分や行列計算を行って求めます。

ホーム RSS購読 サイトマップ
TOP 微分積分学 ヤコビアン 質点系と剛体の力学 平行軸の定理 慣性モーメントの計算